\[\boxed{\mathbf{1354}\mathbf{.}}\]
\[1)\ 5^{\log_{3}x^{2}} - 6 \bullet 5^{\log_{3}x} + 5 = 0\]
\[5^{2\log_{3}x} - 6 \bullet 5^{\log_{3}x} + 5 = 0\]
\[y = 5^{\log_{3}x}:\]
\[y^{2} - 6y + 5 = 0\]
\[D = 36 - 20 = 16\]
\[y_{1} = \frac{6 - 4}{2} = 1;\]
\[y_{2} = \frac{6 + 4}{2} = 5.\]
\[1)\ 5^{\log_{3}x} = 1\]
\[\log_{3}x = 0\]
\[\log_{3}x = \log_{3}3^{0}\]
\[x = 1.\]
\[2)\ 5^{\log_{3}x} = 5\]
\[\log_{3}x = 1\]
\[\log_{3}x = \log_{3}3^{1}\]
\[x = 3.\]
\[Ответ:\ \ x_{1} = 1;\ \ x_{2} = 3.\]
\[2)\ 25^{\log_{3}x} - 4 \bullet 5^{\log_{3}x + 1} = 125\]
\[5^{2\log_{3}x} - 4 \bullet 5 \bullet 5^{\log_{3}x} = 125\]
\[y = 5^{\log_{3}x}:\]
\[y^{2} - 4 \bullet 5y = 125\]
\[y^{2} - 20y - 125 = 0\]
\[D = 400 + 500 = 900\]
\[y_{1} = \frac{20 - 30}{2} = - 5;\]
\[y_{2} = \frac{20 + 30}{2} = 25.\]
\[1)\ 5^{\log_{3}x} = - 5\]
\[корней\ нет.\]
\[2)\ 5^{\log_{3}x} = 25\]
\[\log_{3}x = 2\]
\[\log_{3}x = \log_{3}3^{2}\]
\[x = 9.\]
\[Ответ:\ \ x = 9.\]