\[\boxed{\mathbf{124.}}\]
\[1)\ {3,1}^{7}\text{\ \ }и\ \ {4,3}^{7}\]
\[3,1 < 4,3\]
\[{3,1}^{7} < {4,3}^{7}.\]
\[2)\ \left( \frac{10}{11} \right)^{3}\text{\ \ }и\ \ \left( \frac{12}{11} \right)^{3}\]
\[\frac{10}{11} < \frac{12}{11}\]
\[\left( \frac{10}{11} \right)^{3} < \left( \frac{12}{11} \right)^{3}.\]
\[3)\ {0,3}^{8}\text{\ \ }и\ \ {0,2}^{8}\]
\[0,3 > 0,2\]
\[{0,3}^{8} > {0,2}^{8}.\]
\[4)\ {2,5}^{2}\text{\ \ }и\ \ {2,6}^{2}\]
\[2,5 < 2,6\]
\[{2,5}^{2} < {2,6}^{2}.\]
\[5)\ \left( \frac{7}{9} \right)^{- 2}\text{\ \ }и\ \ \left( \frac{8}{10} \right)^{- 2}\]
\[\frac{7}{9} = \frac{70}{90}\text{\ \ }и\ \ \frac{8}{10} = \frac{72}{90}\]
\[\frac{70}{90} < \frac{72}{90}\]
\[\frac{7}{9} < \frac{8}{10}\]
\[\left( \frac{7}{9} \right)^{- 2} > \left( \frac{8}{10} \right)^{- 2}.\]
\[6)\ \left( \frac{14}{15} \right)^{- 6}\text{\ \ }и\ \ \left( \frac{15}{16} \right)^{- 6}\]
\[\frac{14}{15} = \frac{224}{240}\text{\ \ }и\ \ \frac{15}{16} = \frac{225}{240}\]
\[\frac{224}{240} < \frac{225}{240}\]
\[\frac{14}{15} < \frac{15}{16}\]
\[\left( \frac{14}{15} \right)^{- 6} > \left( \frac{15}{16} \right)^{- 6}.\]
\[7)\ \left( 4\sqrt{3} \right)^{- 3}\text{\ \ }и\ \ \left( 3\sqrt{4} \right)^{- 3}\]
\[\left( 4\sqrt{3} \right)^{2} = 16 \bullet 3 = 48\ \ и\ \ \]
\[\left( 3\sqrt{4} \right)^{2} = 9 \bullet 4 = 36\]
\[48 > 36\]
\[4\sqrt{3} > 3\sqrt{4}\]
\[\left( 4\sqrt{3} \right)^{- 3} < \left( 3\sqrt{4} \right)^{- 3}.\]
\[8)\ \left( 2\sqrt[3]{6} \right)^{- 5}\text{\ \ }и\ \ \left( 6\sqrt[3]{2} \right)^{- 5}\]
\[\left( 2\sqrt[3]{6} \right)^{3} = 8 \bullet 6 = 48\ \ и\ \ \]
\[\left( 6\sqrt[3]{2} \right)^{3} = 216 \bullet 2 = 432\]
\[48 < 432\]
\[2\sqrt[3]{6} < 6\sqrt[3]{2}\]
\[\left( 2\sqrt[3]{6} \right)^{- 5} > \left( 6\sqrt[3]{2} \right)^{- 5}.\]