\[\boxed{\mathbf{1142}\mathbf{.}}\]
\[n = C_{6 + 5}^{4} = C_{11}^{4} =\]
\[= \frac{11!}{(11 - 4)! \bullet 4!} =\]
\[= \frac{11 \bullet 10 \bullet 9 \bullet 8 \bullet 7!}{7! \bullet 4 \bullet 3 \bullet 2} = 330.\]
\[1)\ есть\ хотя\ бы\ один\ белый\ \]
\[шар:\]
\[\ \overline{C} - все\ шары\ красные;\]
\[C - искомое:\]
\[m = C_{5}^{4} = \frac{5!}{(5 - 4)! \bullet 4!} = \frac{5!}{1! \bullet 4!} =\]
\[= \frac{5 \bullet 4!}{4!} = 5;\]
\[P\left( \overline{C} \right) = \frac{5}{330} = \frac{1}{66};\]
\[P(C) = 1 - P\left( \overline{C} \right) = 1 - \frac{1}{66} = \frac{65}{66}.\]
\[Ответ:\ \ \frac{65}{66}.\]
\[2)\ есть\ хотя\ бы\ один\ красный\ \]
\[шар\]
\[\overline{C} - все\ шары\ белые;\ \]
\[C - искомое:\]
\[m = C_{6}^{4} = \frac{6!}{(6 - 4)! \bullet 4!} =\]
\[= \frac{6 \bullet 5 \bullet 4!}{2! \bullet 4!} = \frac{6 \bullet 5}{2} = 3 \bullet 5 = 15;\]
\[P\left( \overline{C} \right) = \frac{15}{330} = \frac{1}{22};\]
\[P(C) = 1 - P\left( \overline{C} \right) = 1 - \frac{1}{22} = \frac{21}{22}.\]
\[Ответ:\ \ \frac{21}{22}.\]