\[\boxed{\mathbf{1141}\mathbf{.}}\]
\[n = C_{5 + 7}^{3} = C_{12}^{3} = \frac{12!}{(12 - 3)! \bullet 3!} =\]
\[= \frac{12 \bullet 11 \bullet 10 \bullet 9!}{9! \bullet 3 \bullet 2} = 4 \bullet 11 \bullet 5 =\]
\[= 220.\]
\[1)\ есть\ по\ крайней\ мере\ один\ \]
\[белый\ шар\]
\[\overline{C} - все\ шары\ черные;\ \]
\[C - искомое:\]
\[m = C_{7}^{3} = \frac{7!}{(7 - 3)! \bullet 3!} =\]
\[= \frac{7 \bullet 6 \bullet 5 \bullet 4!}{4! \bullet 3 \bullet 2} = 7 \bullet 5 = 35;\]
\[P\left( \overline{C} \right) = \frac{35}{220} = \frac{7}{44};\]
\[P(C) = 1 - P\left( \overline{C} \right) = 1 - \frac{7}{44} = \frac{37}{44}.\]
\[Ответ:\ \ \frac{37}{44}.\]
\[2)\ есть\ по\ крайней\ мере\ один\ \]
\[черный\ шар\]
\[\overline{C} - все\ шары\ белые;\]
\[C - искомое:\]
\[m = C_{5}^{3} = \frac{5!}{(5 - 3)! \bullet 3!} =\]
\[= \frac{5 \bullet 4 \bullet 3!}{2! \bullet 3!} = \frac{5 \bullet 4}{2} = 5 \bullet 2 = 10;\]
\[P\left( \overline{C} \right) = \frac{10}{220} = \frac{1}{22};\]
\[P(C) = 1 - P\left( \overline{C} \right) = 1 - \frac{1}{22} = \frac{21}{22}.\]
\[Ответ:\ \ \frac{21}{22}.\]