Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 1302

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 1302

\[\boxed{\mathbf{1302}\mathbf{.}}\]

\[1)\ \frac{\sin{2a} + \cos{2a} + 2\sin^{2}a}{\sin( - a) - \sin(2,5\pi + a)} =\]

\[= \frac{\sin{2a} + \cos{2a} + \left( 1 - \cos{2a} \right)}{- \sin a - \sin\left( \frac{\pi}{2} + a \right)} =\]

\[= \frac{\sin{2a} + \cos{2a} + 1 - \cos{2a}}{- \sin a - \cos a} =\]

\[\frac{2\sin a \bullet \cos a + \sin^{2}a + \cos^{2}a}{- \left( \sin a + \cos a \right)} =\]

\[= - \frac{\left( \sin a + \cos a \right)^{2}}{\sin a + \cos a} =\]

\[= - \left( \sin a + \cos a \right);\]

\[2)\ \frac{\cos{2a} - \sin{2a} - 2\cos^{2}a}{\cos( - a) - \cos(2,5 + a)} =\]

\[= \frac{\cos{2a} - \sin{2a} - \left( 1 + \cos{2a} \right)}{\cos a - \cos\left( \frac{\pi}{2} + a \right)} =\]

\[= \frac{\cos{2a} - \sin{2a} - 1 - \cos{2a}}{\cos a + \sin a} =\]

\[= \frac{- 2\sin a \bullet \cos a - \left( \cos^{2}a + \sin^{2}a \right)}{\cos a + \sin a} =\]

\[= \frac{- \left( \sin a + \cos a \right)^{2}}{\sin a + \cos a} =\]

\[= - \left( \sin a + \cos a \right).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам