Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 1303

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 1303

\[\boxed{\mathbf{1303}\mathbf{.}}\]

\[1)\ \frac{1 - \cos(2\pi - 2a)}{1 - \cos^{2}(a + \pi)} = 2\]

\[\frac{1 - \cos( - 2a)}{1 - \left( - \cos a \right)^{2}} = 2\]

\[\frac{1 - \cos{2a}}{1 - \cos^{2}a} = 2\]

\[\frac{\cos^{2}a + \sin^{2}a - \left( \cos^{2}a - \sin^{2}a \right)}{\cos^{2}a + \sin^{2}a - \cos^{2}a} = 2\]

\[\frac{2\sin^{2}a}{\sin^{2}a} = 2\]

\[2 = 2\]

\[Тождество\ доказано.\]

\[2)\ \frac{\sin^{2}(a + 90{^\circ})}{1 + \sin( - a)} = 1 + \cos(a - 90{^\circ})\ \]

\[\frac{\cos^{2}a}{1 - \sin a} = 1 + \cos(90{^\circ} - a)\]

\[\frac{1 - \sin^{2}a}{1 - \sin a} = 1 + \sin a\]

\[\frac{\left( 1 - \sin a \right)\left( 1 + \sin a \right)}{1 - \sin a} = 1 + \sin a\]

\[1 + \sin a = 1 + \sin a\]

\[Тождество\ доказано.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам