\[\boxed{\mathbf{1301}\mathbf{.}}\]
\[1)\ \frac{1 + \cos{2a}}{2\cos a} =\]
\[= \frac{1 + \cos{2a}}{2} \bullet \frac{1}{\cos a} =\]
\[= \cos^{2}a \bullet \frac{1}{\cos a} = \cos a;\]
\[2)\ \frac{tg\ a - \sin a}{tg\ a + \sin a} = \frac{\frac{\sin a}{\cos a} - \sin a}{\frac{\sin a}{\cos a} + \sin a} =\]
\[= \frac{\sin a - \sin a \bullet \cos a}{\sin a + \sin a \bullet \cos a} =\]
\[= \frac{\sin a \bullet \left( 1 - \cos a \right)}{\sin a \bullet \left( 1 + \cos a \right)} = tg^{2}\frac{a}{2};\]
\[3)\ \frac{\sin a + \sin{3a} + \sin{5a}}{\cos a + \cos{3a} + \cos{5a}} =\]
\[= \frac{\sin{3a} + 2 \bullet \sin\frac{5a + a}{2} \bullet \cos\frac{5a - a}{2}}{\cos{3a} + 2 \bullet \cos\frac{5a + a}{2} \bullet \cos\frac{5a - a}{2}} =\]
\[= \frac{\sin{3a} + 2 \bullet \sin{3a} \bullet \cos{2a}}{\cos{3a} + 2 \bullet \cos{3a} \bullet \cos{2a}} =\]
\[= \frac{\sin{3a} \bullet \left( 1 + 2\cos{2a} \right)}{\cos{3a} \bullet \left( 1 + 2\cos{2a} \right)} =\]
\[= tg\ 3a;\]
\[4)\ \frac{2\sin{2a} + \sin{4a}}{2\sin{2a} - \sin{4a}} =\]
\[= \frac{2\sin{2a} + 2\sin{2a} \bullet \cos{2a}}{2\sin{2a} - 2\sin{2a} \bullet \cos{2a}} =\]
\[= \frac{2\sin{2a} \bullet \left( 1 + \cos{2a} \right)}{2\sin{2a} \bullet \left( 1 - \cos{2a} \right)} =\]
\[= \frac{1 + \cos{2a}}{1 - \cos{2a}} = ctg^{2}\text{\ a.}\]