\[\boxed{\mathbf{861}.}\]
\[5\log_{5}x + \log_{a}x - 4\log_{25}x = a\]
\[5\log_{5}x + \frac{\log_{5}x}{\log_{5}a} - 4\log_{5^{2}}x = a\]
\[5\log_{5}x + \frac{\log_{5}x}{\log_{5}a} - 2\log_{5}x = a\]
\[3\log_{5}x + \frac{\log_{5}x}{\log_{5}a} = a\]
\[\log_{5}x \bullet \left( 3 + \frac{1}{\log_{5}a} \right) = a\]
\[\log_{5}x = \frac{a}{3 + \frac{1}{\log_{5}a}}\]
\[\log_{5}x = \frac{a \bullet \log_{5}a}{3\log_{5}a + 1}\]
\[x = 5^{\frac{a \bullet \log_{5}a}{3\log_{5}a + 1}}\]
\[имеет\ смысл\ при:\]
\[a > 0;\text{\ \ }a \neq 1.\]
\[имеет\ корни\ при:\]
\[3\log_{5}a + 1 \neq 0\]
\[3\log_{5}a \neq - 1\]
\[\log_{5}a \neq - \frac{1}{3}\]
\[\log_{5}a \neq \log_{5}5^{- \frac{1}{3}}\ \]
\[a \neq 5^{- \frac{1}{3}}.\]
\(Ответ:\ \ a > 0;\ \ \ a \neq 1;\ \ \ a \neq 5^{- \frac{1}{3}}.\)