\[\boxed{\mathbf{860}.}\]
\[1)\ x^{\lg 9} + 9^{\lg x} = 6\ \]
\[Область\ определения:\]
\[x - 1 > 0\]
\[x > 1.\]
\[x^{\frac{\log_{x}9}{\log_{x}10}} + 9^{\lg x} = 6\ \]
\[\left( x^{\log_{x}9} \right)^{\frac{1}{\log_{x}10}} + 9^{\lg x} = 6\ \]
\[9^{\frac{1}{\log_{x}10}} + 9^{\lg x} = 6\ \]
\[9^{\lg x} + 9^{\lg x} = 6\]
\[2 \cdot 9^{\lg x} = 6\]
\[9^{\lg x} = 3\]
\[3^{2\lg x} = 3\]
\[2\lg x = 3\]
\[\lg x = \frac{1}{2}\]
\[x = 10^{\frac{1}{2}}\]
\[x = \sqrt{10}.\]
\[Ответ:x = \sqrt{10}.\]
\[2)\ x^{\log_{2}\frac{x}{98}} \cdot 14^{\log_{2}7} = 1\ \]
\[\log_{2}{(x^{\log_{2}\frac{x}{98}} \cdot}14^{\log_{2}7}) = \log_{2}1\]
\[\log_{2}x^{\log_{2}\frac{x}{98}} + \log_{2}14^{\log_{2}7} = 0\]
\[\log_{2}{\left( \log_{2}x - \log_{2}98 \right) + \log_{2}14 \cdot \log_{2}7} = 0\]
\[t = \log_{2}x:\]
\[t^{2} - \log_{2}98t +\]
\[+ \log_{2}14 \cdot \log_{2}7 = 0\]
\[D = \log_{2}^{2}98 -\]
\[- 4 \cdot \log_{2}14 \cdot \log_{2}7 = 1\]
\[t_{1} = \frac{\log_{2}98 - 1}{2} =\]
\[= \frac{2\log_{2}7}{2} = \log_{2}7;\]
\[t_{2} = \frac{\log_{2}98 + 1}{2} =\]
\[= \frac{2 + 2\log_{2}7}{2} = 1 + \log_{2}7.\]
\[\textbf{а)}\log_{2}x = \log_{2}7\]
\[x = 7.\]
\[\textbf{б)}\ \log_{2}x = 1 + \log_{2}7\]
\[x = 2^{1 + \log_{2}7}\]
\[x = 2 \cdot 7 = 14.\]
\[Ответ:x = 7;\ \ x = 14.\]