\[\boxed{\mathbf{859}.}\]
\[\sqrt{3 + \log_{x}{5\sqrt{5}}} \cdot \log_{\sqrt{5}}x = - \sqrt{6}\]
\[\sqrt{3 + \log_{x}5^{\frac{3}{2}}} \cdot \log_{5^{\frac{1}{2}}}x = - \sqrt{6}\]
\[\sqrt{3 + \frac{3}{2}\log_{x}5} \cdot \log_{5^{\frac{1}{2}}}x = - \sqrt{6}\]
\[\sqrt{3 + \frac{3}{2}\log_{x}5} \cdot 2\log_{5}x = - \sqrt{6}\]
\[\sqrt{3 + \frac{3}{2} \cdot \frac{1}{\log_{5}x}} \cdot 2\log_{5}x = - \sqrt{6}\]
\[\log_{5}x = t:\]
\[\sqrt{3 + \frac{3}{2} \cdot \frac{1}{t}} \cdot 2t = - \sqrt{6}\]
\[\left( 3 + \frac{3}{2t} \right) \cdot 4t^{2} = 6\]
\[12t^{2} + 6t = 6\ \ \ \ \ \ |\ :6\]
\[2t^{2} + t - 1 = 0\]
\[D = 1 + 8 = 9\]
\[t_{1} = \frac{- 1 + 3}{4} = \frac{1}{2};\ \ \ \ \ \ \]
\[t_{2} = \frac{- 1 - 3}{4} = - 1.\]
\[\textbf{а)}\ \log_{5}x = \frac{1}{2}\]
\[x = 5^{\frac{1}{2}}\]
\[x = \sqrt{5}.\]
\[\textbf{б)}\ \log_{5}x = - 1\]
\[x = 5^{- 1}\]
\[x = \frac{1}{5}\text{.\ }\]
\[Проверка\ показывает,\ что\ x =\]
\[= \sqrt{5}\ не\ является\ корнем\ \]
\[уравнения.\]
\[Ответ:x = \frac{1}{5}.\]