\[\boxed{\mathbf{855}.}\]
\[1)\ \sqrt{\log_{x}25 + 3} = \frac{1}{\log_{5}x}\ \]
\[\sqrt{\log_{x}25 + 3} = \log_{x}5\]
\[t = \log_{x}5:\]
\[\sqrt{2t + 3} = t\]
\[2t + 3 = t^{2}\]
\[t^{2} - 2t - 3 = 0\]
\[t_{1} = 3;\ \ t_{2} = - 1.\]
\[\textbf{а)}\ \log_{x}5 = 3\]
\[\log_{x}5 = \log_{x}x^{3}\]
\[x^{3} = 5\]
\[x = \sqrt[3]{5}.\]
\[\textbf{б)}\ \log_{x}5 = - 1\]
\[\log_{x}5 = \log_{x}x^{- 1}\]
\[x^{- 1} = 5\]
\[\frac{1}{x} = 5\]
\[x = \frac{1}{5}\]
\[Проверка\ показывает,\ что\ x =\]
\[= \frac{1}{5}\ не\ является\ корнем\]
\[\ уравнения.\]
\[Ответ:x = \sqrt[3]{5}.\]
\[2)\ \sqrt{2\log_{2}^{2}x + 3\log_{2}x - 5} =\]
\[= \log_{2}{2x}\]
\[\sqrt{2\log_{2}^{2}x + 3\log_{2}x - 5} =\]
\[= \log_{2}2 + \log_{2}x\]
\[Пусть\ y = \log_{2}x:\]
\[\sqrt{2y^{2} + 3y - 5} = 1 + y\]
\[2y^{2} + 3y - 5 = 1 + 2y + y^{2}\]
\[y^{2} + y - 6 = 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 - 5}{2} = - 3;\text{\ \ }\]
\[y_{2} = \frac{- 1 + 5}{2} = 2.\]
\[1)\ \log_{2}x = - 3\]
\[\log_{2}x = \log_{2}2^{- 3}\]
\[x = 2^{- 3} = \frac{1}{2^{3}}\]
\[x = \frac{1}{8}.\]
\[2)\ \log_{2}x = 2\]
\[\log_{2}x = \log_{2}2^{2}\]
\[x = 2^{2}\]
\[x = 4.\]
\[Проверка:\]
\[\sqrt{2\log_{2}^{2}\frac{1}{8} + 3\log_{2}\frac{1}{8} - 5} -\]