Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 854

Авторы:
Тип:учебник

Задание 854

\[\boxed{\mathbf{854}.}\]

\[1)\ \lg^{2}\ (x + 1) =\]

\[= \lg(x + 1)\lg(x - 1) +\]

\[+ 2\lg^{2}{(x - 1)}\ \]

\[ОДЗ:\]

\[x + 1 > 0;\ \ \ \ \ \ x - 1 > 0\]

\[x > - 1;\ \ \ \ \ \ \ \ \ \ x > 1\]

\[x > 1.\]

\[1)\ \lg^{2}\ (x - 1) = 0\]

\[x - 1 = 10^{0}\]

\[x = 2.\]

\[Подставим\ в\ уравнение:\]

\[\lg^{2}3 = \lg 3 \cdot \lg 2 + 2\lg^{2}1\]

\[\lg^{2}3 \neq \lg 3 \cdot \lg 2 + 0\]

\[x = 2\ не\ является\ корнем\ \]

\[уравнения.\]

\[2)\ \frac{\ \lg^{2}(x + 1)}{\lg^{2}(x - 1)} =\]

\[= \frac{\lg(x + 1)\lg(x - 1)}{\lg^{2}(x - 1)} +\]

\[+ \frac{2\lg^{2}(x - 1)}{\lg^{2}(x - 1)}\ \]

\[\left( \frac{\lg(x + 1)}{\lg(x - 1)} \right)^{2} = \frac{\lg(x + 1)}{\lg(x - 1)} + 2\]

\[t = \frac{\lg(x + 1)}{\lg(x - 1)}:\]

\[t^{2} - t - 2 = 0\]

\[t_{1} + t_{2} = 1;\ \ \ t_{1} \cdot t_{2} = - 2\]

\[t_{1} = 2;\ \ \ t_{2} = - 1.\]

\[\textbf{а)}\ \frac{\lg(x + 1)}{\lg(x - 1)} = 2\]

\[\lg(x + 1) = 2\lg(x - 1)\]

\[\lg(x + 1) = \lg(x - 1)^{2}\]

\[x + 1 = x^{2} - 2x + 1\]

\[x^{2} - 3x = 0\]

\[x(x - 3) = 0\]

\[x = 0\ (не\ подходит\ по\ ОДЗ);\]

\[x = 3.\]

\[\textbf{б)}\ \frac{\lg(x + 1)}{\lg(x - 1)} = - 1\]

\[\lg(x + 1) = - 1\lg(x - 1)\]

\[\lg(x + 1) = \lg(x - 1)^{- 1}\]

\[x + 1 = \frac{1}{x - 1}\]

\[(x + 1)(x - 1) = 1\]

\[x^{2} - 1 = 1\]

\[x^{2} = 2\]

\[x = - \sqrt{2}\ (не\ подходит\ по\ ОДЗ);\]

\[x = \sqrt{2}.\]

\[Ответ:\ \ x = \sqrt{2};x = 3.\]

\[2)2\log_{5}(4 - x) \cdot \log_{2x}(4 - x) =\]

\[= 3\log_{5}{(4 - x)} - \log_{5}{2x}\ \]

\[2\log_{5}^{2}(4 - x) \cdot \frac{\log_{5}(4 - x)}{\log_{5}{2x}} =\]

\[= 3\log_{5}(4 - x) - \log_{5}{2x}\]

\[\frac{2\log_{5}^{2}(4 - x)}{\log_{5}{2x}} = 3\log_{5}(4 - x) -\]

\[- \log_{5}{2x}\ \ \ \ \ \ \ \ \ \ \ | \cdot \log_{5}{2x}\]

\[2\left( \frac{\log_{5}(4 - x)}{\log_{5}{2x}} \right)^{2} =\]

\[= \frac{3\log_{5}{(4 - x)}}{\log_{5}{2x}} - 1\]

\[t = \frac{\log_{5}(4 - x)}{\log_{5}{2x}}:\]

\[2t^{2} - 3t + 1 = 0\]

\[D = 9 - 8 = 1\]

\[t_{1} = \frac{3 + 1}{4} = 1;\ \ \ \]

\[\ t_{2} = \frac{3 - 1}{4} = \frac{1}{2}.\]

\[\textbf{а)}\ \frac{\log_{5}(4 - x)}{\log_{5}{2x}} = \frac{1}{2}\]

\[\frac{2\log_{5}(4 - x) - \log_{2}{2x}}{\log_{5}{2x}} = 0\]

\[\log_{5}{(4 - x)^{2} = \log_{5}{2x}}\]

\[(4 - x)^{2} = 2x\]

\[16 - 8x + x^{2} - 2x = 0\]

\[x^{2} - 10x + 16 = 0\]

\[D_{1} = 25 - 16 = 9\]

\[x_{1} = 5 + 3 = 8;\ \ \]

\[\ x_{2} = 5 - 3 = 2.\]

\[\textbf{б)}\ \frac{\log_{5}(4 - x)}{\log_{5}{2x}} = 1\]

\[\frac{\log_{5}{(4 - x)}}{\log_{5}{(2x)}} = \frac{\log_{5}{2x}}{\log_{5}{2x}}\]

\[\log_{5}(4 - x) = \log_{5}{2x}\]

\[4 - x = 2x\]

\[3x = 4\]

\[x = \frac{4}{3}.\]

\[Проверка\ показывает,\ что\ x =\]

\[= 8\ не\ является\ корнем\]

\[\ уравнения.\]

\[Ответ:x = 2;\ \ x = \frac{4}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам