\[\boxed{\mathbf{856}.}\]
\[1 + \log_{6}\frac{x + 3}{x + 7} = \frac{1}{4}\log_{\sqrt{6}}(x - 1)^{2}\]
\[Область\ определения:\]
\[1)\ \ \frac{x + 3}{x + 7} > 0\]
\[x < - 7;\ \ x > - 3.\]
\[2)\ (x - 1)^{2} > 0\ \]
\[x - любое\ число,\ кроме\ x = 1.\]
\[D(y) =\]
\[= ( - \infty; - 7) \cup ( - 3;1) \cup (1;\ + \infty).\]
\[1 + \log_{6}\frac{x + 3}{x + 7} =\]
\[= \frac{1}{4} \cdot 2\log_{6}\ (x - 1)^{2}\]
\[1 + \log_{6}\frac{x + 3}{x + 7} = \frac{1}{2}\log_{6}\ (x - 1)^{2}\]
\[1 + \log_{6}\frac{x + 3}{x + 7} = \log_{6}\ (x - 1)^{2 \cdot \frac{1}{2}}\]
\[\log_{6}\frac{x + 3}{x + 7} - \log_{6}\ |x - 1| = - 1\]
\[\log_{6}\ \left( \frac{x + 3}{(x + 7)|x - 1|} \right) = - 1\]
\[\frac{x + 3}{(x + 7)|x - 1|} = 6^{- 1}\]
\[\frac{x + 3}{(x + 7)|x - 1|} = \frac{1}{6}\]
\[6 \cdot (x + 3) = (x + 7)|x - 1|\]
\[x > - 1:\]
\[6(x + 3) = (x + 7)(x - 1)\]
\[6x + 18 = x^{2} - x + 7x - 7\]
\[x^{2} = 25\]
\[x = \pm 5.\]
\[x < - 1:\]
\[6 \cdot (x + 3) = (x + 7)(1 - x)\]
\[6x + 18 = x - x^{2} + 7 - 7x\]
\[x^{2} + 12x + 11 = 0\]
\[D_{1} = 36 - 11 = 25\]
\[x_{1} = - 6 + 5 = - 1;\]
\[\text{\ \ }x_{2} = - 6 - 5 = - 11.\]
\[Ответ:x = - 11;x = - 1;x = 5.\]