Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 853

Авторы:
Тип:учебник

Задание 853

\[\boxed{\mathbf{853}.}\]

\[1)\lg\left( 6 \cdot 5^{x} - 25 \cdot 20^{x} \right) -\]

\[- \lg 25 = x\ \]

\[\lg\frac{6 \cdot 5^{x} - 25 \cdot 25^{x}}{25} = x\]

\[\frac{6 \cdot 5^{x} - 25 \cdot 25^{x}}{25} = 10^{x}\]

\[\frac{6 \cdot 5^{x} - 25 \cdot 20^{x} - 25 \cdot 10^{x}}{25} = 0\]

\[6 \cdot 5^{x} - 25 \cdot 20^{x} - 25 \cdot 10^{x} = 0\]

\[6 - 25 \cdot 4^{x} - 25 \cdot 2^{x} = 0\]

\[t = 2^{x}:\]

\[- 25t^{2} - 25t + 6 = 0\]

\[25t^{2} + 25t - 6 = 0\]

\[D = 625 + 600 = 1225 = 35^{2}\]

\[t_{1} = \frac{- 25 + 35}{50} = \frac{10}{50} = 0,2;\]

\[t_{2} = \frac{- 25 - 35}{50} = - \frac{60}{50} = - 1,2.\]

\[\textbf{а)}\ 2^{x} = - 1,2\]

\[x = \log_{2}( - 1,2)\]

\[не\ имеет\ смысла.\]

\[\textbf{б)}\ 2^{x} = 0,2\]

\[x = \log_{2}{0,2}.\]

\[Ответ:x = \log_{2}{0,2}.\]

\[2)\lg{(2^{x} + x + 4)} = x - x\lg 5\ \]

\[\lg\left( 2^{x} + x + 4 \right) = \lg 10^{x} - \lg 5^{x}\]

\[\lg\left( 2^{x} + x + 4 \right) = \lg\left( \frac{10^{x}}{5^{x}} \right)\]

\[\lg{(2^{x} + x + 4)} = \lg 2^{x}\]

\[2^{x} + x + 4 = 2^{x}\]

\[x + 4 = 0\]

\[x = - 4.\]

\[Ответ:x = - 4.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам