\[\boxed{\mathbf{851}.}\]
\[1)\log_{2}x - 2\log_{x}2 = - 1;\ \ \]
\[\ x > 0;\ \ \ x \neq 1.\ \ \]
\[\log_{2}x = t:\]
\[t - \frac{2}{t} = - 1\]
\[t^{2} + t - 2 = 0\]
\[t_{1} + t_{2} = - 1;\ \ \ t_{2} \cdot t_{1} = - 2\]
\[t_{1} = - 2;\ \ t_{2} = 1.\]
\[\textbf{а)}\ \log_{2}x = - 2\]
\[x = 2^{- 2} = \frac{1}{4}.\]
\[\textbf{б)}\ \log_{2}x = 1\]
\[x = 2^{1} = 2.\]
\[Ответ:x = \frac{1}{4};\ \ x = 2.\]
\[2)\log_{2}x + \log_{x}2 = 2,5;\ \ \]
\[\ x > 0;\ \ x \neq 1\]
\[\log_{2}x = t:\]
\[t + \frac{1}{t} = 2,5\ \ \ \ \ \ \ | \cdot 2t\]
\[2t^{2} - 5t + 2 = 0\]
\[D = 25 - 16 = 9\]
\[t_{1} = \frac{5 + 3}{4} = 2;\ \ \ t_{2} = \frac{5 - 3}{4} = \frac{1}{2}.\]
\[\textbf{а)}\ \log_{2}x = 2\]
\[x = 2^{2} = 4.\]
\[\textbf{б)}\ \log_{2}x = \frac{1}{2}\]
\[x = \sqrt{2}.\]
\[Ответ:x = 4;\ \ x = \sqrt{2}\text{.\ }\]
\[3)\log_{3}x + 2\log_{x}3 = 3;\ \ \]
\[\ x > 0;\ \ x \neq 1\]
\[\log_{3}x = t:\]
\[t + \frac{2}{t} = 3\]
\[t^{2} - 3t + 2 = 0\]
\[t_{1} + t_{2} = 3;\ \ \ t_{1} \cdot t_{2} = 2\]
\[t_{1} = 1;\ \ t_{2} = 2.\]
\[\textbf{а)}\ \log_{3}x = 1\]
\[x = 3^{1} = 3.\]
\[\textbf{б)}\ \log_{3}x = 2\]
\[x = 3^{2} = 9.\]
\[Ответ:x = 3;\ \ x = 9.\]
\[4)\log_{3}x - 6\log_{x}3 = 1;\ \ \ \]
\[\ x > 0;\ \ x \neq 1\ \]
\[\log_{3}x = t:\]
\[t - \frac{6}{t} = 1\]
\[t^{2} - t - 6 = 0\]
\[t_{1} + t_{2} = 1;\ \ \ t_{1} \cdot t_{2} = - 6\]
\[t_{1} = 3;\ \ t_{2} = - 2.\]
\[\textbf{а)}\ \log_{3}x = 3\]
\[x = 3^{3} = 27.\]
\[\textbf{б)}\ \log_{3}x = - 2\]
\[x = 3^{- 2} = \frac{1}{9}.\]
\[Ответ:x = - \frac{1}{9};\ \ x = 27.\]