\[\boxed{\mathbf{850}.}\]
\[1)\ \left\{ \begin{matrix} \lg x - \lg y = 7 \\ \lg x + \lg y = 5 \\ \end{matrix} \right.\ \]
\[\lg x - \lg y = 7\]
\[\lg x = 7 + \lg y\]
\[Подставим\ во\ второе\]
\[\ уравнение:\]
\[7 + \lg y + \lg y = 5\]
\[2\lg y = - 2\]
\[\lg y = - 1.\]
\[\left\{ \begin{matrix} \lg x = 7 - 1 \\ \lg y = - 1\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} \lg x = 6\ \ \ \\ \lg y = - 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} x = 10^{6}\text{\ \ } \\ y = 10^{- 1} \\ \end{matrix} \right.\ \]
\[Ответ:\left( 10^{6};10^{- 1} \right).\]
\[2)\ \left\{ \begin{matrix} \log_{2}x + \frac{1}{2}\log_{2}\frac{1}{y} = 4 \\ xy = 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\log_{2}x + \frac{1}{2}\log_{2}\frac{1}{y} = 4\]
\[\log_{2}\frac{x}{\sqrt{y}} = 4\]
\[\frac{x}{\sqrt{y}} = 2^{4}\]
\[x = 16\sqrt{y}.\]
\[Подставим\ во\ второе\]
\[\ уравнение:\]
\[16\sqrt{y} \cdot y = 2\]
\[16\sqrt{y^{3}} = 2\]
\[\sqrt{y^{3}} = \frac{2}{16} = \frac{1}{8}\]
\[y = \frac{1}{4}.\]
\[Найдем\ x:\]
\[x = 16 \cdot \sqrt{y} = 16 \cdot \sqrt{\frac{1}{4}} =\]
\[= 16 \cdot 2 = 8.\]
\[\left\{ \begin{matrix} x = 8 \\ y = \frac{1}{4} \\ \end{matrix} \right.\ \]
\[Ответ:\left( 8;\frac{1}{4} \right).\]