\[\boxed{\mathbf{848}.}\]
\[1)\ 2^{3\lg x} \cdot 5^{\lg x} = 1600\]
\[\left( 2^{3} \cdot 5 \right)^{\lg x} = 1600\]
\[40^{\lg x} = 1600\]
\[\lg 40^{\lg x} = \lg 1600\]
\[\lg x \cdot \lg 40 = \lg 1600\]
\[\lg x = \frac{\lg 1600}{\lg 40}\]
\[\lg x = \log_{40}1600\]
\[\lg x = 2\]
\[x = 10^{2}\]
\[x = 100.\]
\[Ответ:x = 100.\]
\[2)\ 2^{\log_{3}x^{2}} \cdot 5^{\log_{3}x} = 400\]
\[\left( 2^{2} \cdot 5 \right)^{\log_{3}x} = 400\]
\[20^{\log_{3}x} = 400\]
\[\lg 20^{\log_{3}x} = \lg 400\]
\[\log_{3}x \cdot \lg 20 = \lg 400\]
\[\log_{3}x = \frac{\lg 400}{\lg 20}\]
\[\log_{3}x = \log_{20}400\]
\[\log_{3}x = 2\]
\[x = 3^{2}\]
\[x = 9\]
\[Ответ:x = 9.\ \]
\[3)\ \frac{1}{4 + \lg x} + \frac{2}{2 - \lg x} = 1\]
\[\frac{\log^{2}x + 3\lg x + 2}{\left( 4 + \lg x \right)\left( 2 - \lg x \right)} = 0\]
\[\log^{2}x + 3\lg x + 2 = 0\]
\[\lg x = t:\]
\[t^{2} + 3t + 2 = 0\]
\[t_{1} + t_{2} = - 3;\ \ \ t_{1} \cdot t_{2} = 2\]
\[t_{1} = - 2;\ \ t_{2} = - 1.\]
\[\textbf{а)}\ \lg x = - 2\]
\[x = 10^{- 2} = \frac{1}{100}.\]
\[\textbf{б)}\ \lg x = - 1\]
\[x = 10^{- 1} = \frac{1}{10}.\]
\[Ответ:\ \ x = \frac{1}{10};\ \ x = \frac{1}{100}\text{.\ }\]
\[4)\ \frac{1}{5 - \lg x} + \frac{2}{1 + \lg x} = 1\]
\[\log^{2}x - 5\lg x + 6 = 0\]
\[t = \lg x:\]
\[t^{2} - 5t + 6 = 0\]
\[t_{1} + t_{2} = 5;\ \ \ t_{1} \cdot t_{2} = 6\]
\[t_{1} = 2;\ \ t_{2} = 3.\]
\[\textbf{а)}\ \lg x = 2\]
\[x = 10^{2}\]
\[x = 100.\]
\[\textbf{б)}\ \lg x = 3\]
\[x = 10^{3}\]
\[x = 1000.\]
\[Ответ:x = 100;x = 1000.\]