\[\boxed{\mathbf{841}.}\]
\[1)\lg(x - 1) - \lg(2x - 11) = \lg 2\]
\[\lg\left( \frac{x - 1}{2x - 11} \right) = \lg 2\]
\[\frac{x - 1}{2x - 11} = 2\ \ \ \ \ \ | \cdot (2x - 11) \neq 0\]
\[x - 1 = 2 \cdot (2x - 11)\]
\[x - 1 = 4x - 22\]
\[4x - x = - 1 + 22\]
\[3x = 21\]
\[x = 7\]
\[Ответ:x = 7.\]
\[2)\lg{(3x - 1)} - \lg(x + 5) = \lg 5\]
\[\lg\left( \frac{3x - 1}{x + 5} \right) = \lg 5\]
\[\frac{3x - 1}{x + 5} = 5\ \ \ \ \ \ \ \ \ \ \ \ | \cdot (x + 5) \neq 0\]
\[3x - 1 = 5 \cdot (x + 5)\]
\[3x - 1 = 5x + 25\]
\[5x - 3x = - 1 - 25\]
\[2x = - 26\]
\[Ответ:корней\ нет.\]