\[\boxed{\mathbf{808}.}\]
\[a = lg5;b = lg3:\]
\[\log_{30}8 = 3\log_{30}2 = \frac{3}{\log_{2}30} =\]
\[= \frac{3}{\log_{2}(2 \cdot 3 \cdot 5)} =\]
\[= \frac{3}{1 + \log_{2}3 + \log_{2}5} = *;\]
\[lg2 = \frac{1}{\log_{2}10} = \frac{1}{\log_{2}(2 \cdot 5)} =\]
\[= \frac{1}{1 + \log_{2}5} = \frac{1}{1 + \frac{lg5}{lg2}} =\]
\[= \frac{1}{1 + \frac{a}{lg2}} = \frac{lg2}{lg2 + a} \rightarrow\]
\[\rightarrow lg2 = 1 - a.\]
\[* = \frac{3}{1 + \frac{lg3}{lg2} + \frac{lg5}{lg2}} =\]
\[= \frac{3}{1 + \frac{b}{1 - a} + \frac{a}{1 - a}} =\]
\[= \frac{3 \cdot (1 - a)}{b + 1}.\]