\[\boxed{\mathbf{809}.}\]
\[a = \log_{2}3;b = \log_{3}5:\]
\[\log_{300}120 = \frac{lg120}{lg300} =\]
\[= \frac{\lg(3 \cdot 4 \cdot 10)}{lg300} =\]
\[= \frac{lg3 + lg4 + lg10}{lg300} =\]
\[= \frac{lg3 + lg2^{2} + 1}{lg300} =\]
\[= \frac{lg3 + 2lg2 + 1}{\lg(3 \cdot 100)} =\]
\[= \frac{lg3 + 2lg2 + lg1}{lg3 + lg10^{2}} =\]
\[= \frac{lg3 + 2lg2 + 1}{lg3 + 2};\]
\[a = \log_{2}3 = \frac{lg3}{lg2} \rightarrow lg3 = a \cdot lg2;\]
\[b = \log_{3}5 = \log_{3}(10\ :2) \rightarrow b =\]
\[= \log_{3}10 - \log_{3}2 = \frac{1}{lg3} -\]
\[- \frac{lg2}{lg3} = \frac{1}{alg2} - \frac{lg2}{alg2} =\]
\[= \frac{1 - lg2}{alg2}\]
\[b \cdot alg2 = 1 - lg2\]
\[\text{ab}lg2 + lg2 = 1\]
\[lg2 \cdot (ab + 1) = 1\]
\[lg2 = \frac{1}{ab + 1}.\]
\[\frac{lg3 + 2lg2 + 1}{lg3 + 2} =\]
\[= \frac{a \cdot lg2 + 2lg2 + 1}{alg2 + 2} =\]
\[= \frac{a \cdot \frac{1}{ab + 1} + 2 \cdot \frac{1}{ab + 1} + 1}{a \cdot \frac{1}{ab + 1} + 2} =\]
\[= \frac{a + ab + 3}{ab + 1}\ :\frac{a + 2ab + 2}{ab + 1} =\]
\[= \frac{(a + ab + 3)(ab + 1)}{(ab + 1)(a + 2ab + 2)} =\]
\[= \frac{a + ab + 3}{a + 2ab + 2}.\]