\[\boxed{\mathbf{807}.}\]
\[\log_{36}8 = m:\]
\[1)\ {\log_{36}8}{= \log_{36}}2^{3} = 3\log_{36}2 =\]
\[= \frac{3}{\log_{2}36} = \frac{3}{2\log_{2}6} =\]
\[= \frac{3}{2\log_{2}(3 \cdot 2)} =\]
\[= \frac{3}{2\left( \log_{2}3 + \log_{2}2 \right)} =\]
\[= \frac{3}{2\log_{2}3 + 2} = m.\]
\[2)\ \log_{36}9 = \log_{36}3^{2} =\]
\[\text{=}2\log_{36}3 = 2 \cdot \frac{1}{\log_{3}36} =\]
\[= \frac{2}{\log_{3}6^{2}} = \frac{2}{2\log_{3}6} = \frac{1}{\log_{3}6} =\]
\[= \frac{1}{\log_{3}(2 \cdot 3)} = \frac{1}{\log_{3}2 + \log_{3}3} =\]
\[= \frac{1}{\log_{3}2 + 1} = \frac{1}{1 + \frac{1}{\log_{2}3}} =\]
\[= \frac{1}{1 + \frac{2m}{3 - 2m}} =\]
\[= 1 - \frac{2}{3}\text{m.}\]