\[\boxed{\mathbf{789}\mathbf{.}}\]
\[1)\log_{36}2 - \frac{1}{2}\log_{\frac{1}{6}}3 = \log_{6^{2}}2 -\]
\[- \frac{1}{2}\log_{6^{- 1}}3 = \frac{1}{2}\log_{6}2 +\]
\[+ \frac{1}{2}\log_{6}3 =\]
\[= \frac{1}{2}\log_{6}(2 \bullet 3) = \frac{1}{2}\log_{6}6 =\]
\[= \frac{1}{2} \bullet 1 = 0,5\]
\[2)\ 2\log_{25}30 + \log_{0,2}6 =\]
\[= 2\log_{5^{2}}30 + \log_{\frac{1}{5}}6 =\]
\[= \frac{2}{2}\log_{5}30 + \log_{5^{- 1}}6 =\]
\[= \log_{5}30 - \log_{5}6 =\]
\[= \log_{5}\frac{30}{6} = \log_{5}5 = 1\]