\[\boxed{\mathbf{788}\mathbf{.}}\]
\[1)\ \ \frac{\log_{4}9}{2\log_{2}3} = \frac{\log_{2^{2}}3^{2}}{2\log_{2}3} =\]
\[= \frac{\log_{2}3}{2\log_{2}3} = \frac{1}{2}\]
\[2)\ \frac{\log_{\frac{1}{8}}16}{- 3\log_{\frac{1}{8}}2} = \frac{\log_{\frac{1}{8}}2^{4}}{- 3\log_{\frac{1}{8}}2} =\]
\[= \frac{4\log_{\frac{1}{8}}2}{- 3\log_{\frac{1}{8}}2} = - \frac{4}{3}\]
\[3)\ \frac{\log_{\frac{1}{36}}7}{\log_{36}49} = \frac{\log_{36^{- 1}}7}{\log_{36}7^{2}} =\]
\[= \frac{- \log_{36}7}{2\log_{36}7} = - \frac{1}{2}\]
\[4)\ \frac{- 3\log_{\frac{1}{16}}19}{\log_{0,25}19} = \frac{- 3\log_{\left( \frac{1}{4} \right)^{2}}19}{\log_{\frac{1}{4}}19} =\]
\[= \frac{- 3 \cdot \frac{1}{2}\log_{\frac{1}{4}}19}{\log_{\frac{1}{4}}19} = - \frac{3}{2}\]