\[\boxed{\mathbf{751}\mathbf{.}}\]
\[\left( \sqrt{2 + \sqrt{3}} \right)^{x} + \left( \sqrt{2 - \sqrt{3}} \right)^{x} = 4\]
\[Замена\ \ a = \left( \sqrt{2 + \sqrt{3}} \right)^{x};\ \ \]
\[b = \left( \sqrt{2 - \sqrt{3}} \right)^{x}:\]
\[a \cdot b =\]
\[= \left( \sqrt{2 + \sqrt{3}} \right)^{x} \cdot \left( \sqrt{2 - \sqrt{3}} \right)^{x} =\]
\[= \left( \sqrt{4 - 3} \right)^{x} = \left( \sqrt{1} \right)^{x} = 1^{x} = 1.\]
\[\left\{ \begin{matrix} a + b = 4 \\ a \cdot b = 1\ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} a = 4 - b\ \ \ \ \ \ \\ (4 - b)b = 1 \\ \end{matrix} \right.\ \]
\[4b - b^{2} - 1 = 0\]
\[b^{2} - 4b + 1 = 0\]
\[D_{1} = 4 - 1 = 3\]
\[b = 2 \pm \sqrt{3}.\]
\[a_{1} = 4 - 2 - \sqrt{3} = 2 - \sqrt{3};\]
\[a_{2} = 4 - 2 + \sqrt{3} = 2 + \sqrt{3}.\]
\[1)\ \ \left\{ \begin{matrix} \left( \sqrt{2 + \sqrt{3}} \right)^{x} = 2 + 2\sqrt{3} \\ \left( \sqrt{2 - \sqrt{3}} \right)^{x} = 2 - 2\sqrt{3} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ }\]
\[\frac{x}{2} = 1\]
\[x = 2.\]
\[2)\ \left\{ \begin{matrix} \left( \sqrt{2 + \sqrt{3}} \right)^{x} = 2 - 2\sqrt{3} \\ \left( \sqrt{2 - \sqrt{3}} \right)^{x} = 2 + 2\sqrt{3} \\ \end{matrix} \right.\ \]
\[\frac{x}{2} = - 1\]
\[x = - 2.\]
\[Ответ:x = \pm 2.\]