\[\boxed{\mathbf{752}\mathbf{.}}\]
\[2^{|x + 1|} - \left| 2^{x} - 1 \right| = 1 + 2^{x}\]
\[1)\ x \leq - 1:\]
\[2^{- x - 1} + 2^{x} - 1 = 1 + 2^{x}\]
\[2^{- x - 1} = 2\]
\[- x - 1 = 1\]
\[- x = 2\]
\[x = - 2.\]
\[2) - 1 < x \leq 0:\]
\[2^{x + 1} + 2^{x} - 1 = 1 + 2^{x}\]
\[2^{x + 1} = 2\]
\[x + 1 = 1\]
\[x = 0.\]
\[3)\ x > 0:\]
\[2^{x + 1} - 2^{x} + 1 = 1 + 2^{x}\]
\[2^{x + 1} = 2 \cdot 2^{x}\]
\[2^{x + 1} = 2^{x + 1}\]
\[x - любое\ число.\]
\[Ответ:x = - 2;\ \ x \geq 0.\]