\[\boxed{\mathbf{750}\mathbf{.}}\]
\[4^{x} - (5b - 3) \cdot 2^{x} +\]
\[+ 4b^{2} - 3b = 0\]
\[2^{2x} - (5b - 3) \cdot 2^{x} +\]
\[+ 4b^{2} - 3b = 0\]
\[Пусть\ 2^{x} = t > 0:\]
\[t^{2} - (5b - 3)t + \left( 4b^{2} - 3b \right) = 0\]
\[D = (5b - 3)^{2} -\]
\[- 4 \cdot \left( 4b^{2} - 3b \right) = 25b^{2} -\]
\[- 30b + 9 - 16b^{2} + 12b =\]
\[= 9b^{2} - 18b + 9 =\]
\[= 9 \cdot \left( b^{2} - 2b + 1 \right) =\]
\[= 9 \cdot (b - 1)^{2}.\]
\[1)\ b - 1 = 0;\ \ b = 1 - имеет\]
\[\ единственный\ корень:\]
\[4^{x} - (5 - 3) \cdot 2^{x} + 4 - 3 = 0\]
\[4^{x} - {2 \cdot 2}^{x} + 1 = 0\]
\[\left( 2^{x} - 1 \right)^{2} = 0\]
\[2^{x} - 1 = 0\]
\[2^{x} = 2^{0}\]
\[x = 0.\]
\[2)\ при\ D > 0;\ \ один\ из\ \]
\[корней < 0:\]
\[t_{1} = \frac{5b - 3 + \sqrt{9 \cdot (b - 1)^{2}}}{2} =\]
\[= \frac{5b - 3 + 3 \cdot (b - 1)}{2} =\]
\[= 4b - 3;\]
\[t_{2} = \frac{5b - 3 - 3 \cdot (b - 1)}{2} = b.\]
\[Если\ b < 0:\]
\[t < 0 - корней\ нет.\]
\[Если\ 4b - 3 < 0:\]
\[b < \frac{3}{4} - единственный\ корень.\]
\[Ответ:0 < b \leq \frac{3}{4};\ \ b = 1.\]