\[\boxed{\mathbf{714}.}\]
\[1)\ {0,4}^{x} - {2,5}^{x + 1} > 1,5;\]
\[\left( \frac{4}{10} \right)^{x} - 2,5 \bullet \left( \frac{25}{10} \right)^{x} - 1,5 > 0;\]
\[\left( \frac{2}{5} \right)^{x} - 2,5 \bullet \left( \frac{5}{2} \right)^{x} - 1,5 > 0;\]
\[Пусть\ y = \left( \frac{2}{5} \right)^{x}:\]
\[y - \frac{2,5}{y} - 1,5 > 0\ \ \ \ \ | \bullet y;\]
\[y^{2} - 2,5 - 1,5y > 0;\]
\[2y^{2} - 3y - 5 > 0;\]
\[D = 3^{2} + 4 \bullet 2 \bullet 5 = 9 + 40 = 49\]
\[y_{1} = \frac{3 - 7}{2 \bullet 2} = - \frac{4}{4} = - 1;\]
\[y_{2} = \frac{3 + 7}{2 \bullet 2} = \frac{10}{4} = \frac{5}{2};\]
\[(y + 1)\left( y - \frac{5}{2} \right) > 0;\]
\[y < - 1\ \ и\ \ y > \frac{5}{2};\]
\[Первое\ значение:\]
\[\left( \frac{2}{5} \right)^{x} < - 1 - нет\ корней:\]
\[Второе\ значение:\]
\[\left( \frac{2}{5} \right)^{x} > \frac{5}{2};\]
\[\left( \frac{2}{5} \right)^{x} > \left( \frac{2}{5} \right)^{- 1};\]
\[x < - 1;\]
\[Ответ:\ \ x < - 1.\]
\[2)\ 25 \bullet {0,04}^{2x} > {0,2}^{x(3 - x)};\]
\[\frac{{0,04}^{2x}}{{0,2}^{x(3 - x)}} > \frac{1}{25};\]
\[\frac{{0,2}^{2 \bullet 2x}}{{0,2}^{3x - x^{2}}} > \left( \frac{1}{5} \right)^{2};\]
\[{0,2}^{4x - \left( 3x - x^{2} \right)} > (0,2)^{2};\]
\[(0,2)^{x + x^{2}} > (0,2)^{2};\]
\[x + x^{2} < 2;\]
\[x^{2} + x - 2 < 0;\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2\ \ и\ \]
\[\ x_{2} = \frac{- 1 + 3}{2} = 1;\]
\[(x + 2)(x - 1) < 0;\]
\[- 2 < x < 1.\]
\[Ответ:\ \ - 2 < x < 1.\]
\[3)\ \frac{4^{x}}{4^{x} - 3^{x}} < 4;\]
\[\frac{1}{1 - \frac{3^{x}}{4^{x}}} < 4;\]
\[1 < 4\left( 1 - \left( \frac{3}{4} \right)^{x} \right);\]
\[1 < 4 - 4 \bullet \left( \frac{3}{4} \right)^{x};\]
\[4 \bullet \left( \frac{3}{4} \right)^{x} < 3;\]
\[\left( \frac{3}{4} \right)^{x} < \left( \frac{3}{4} \right)^{1};\]
\[x > 1;\]
\[Неравенство\ всегда\ верно\ при:\]
\[4^{x} - 3^{x} < 0;\]
\[4^{x} < 3^{x};\]
\[\frac{4^{x}}{3^{x}} < 1;\]
\[\left( \frac{4}{3} \right)^{x} < \left( \frac{4}{3} \right)^{0};\]
\[x < 0.\]
\[Ответ:\ \ x < 0;\ \ x > 1.\]
\[4)\ \left( \frac{1}{4} \right)^{x} - 32 \bullet \left( \frac{1}{8} \right)^{x^{2} - 1} < 0;\]
\[\left( \frac{1}{2} \right)^{2x} - 2^{5} \bullet \left( \frac{1}{2} \right)^{3\left( x^{2} - 1 \right)} < 0;\]
\[2^{- 2x} - 2^{5} \bullet 2^{- 3\left( x^{2} - 1 \right)} < 0;\]
\[2^{- 2x} - 2^{5 - 3\left( x^{2} - 1 \right)} < 0;\]
\[2^{- 2x} < 2^{5 - 3\left( x^{2} - 1 \right)};\]
\[- 2x < 5 - 3\left( x^{2} - 1 \right);\]
\[- 2x < 5 - 3x^{2} + 3;\]
\[3x^{2} - 2x - 8 < 0;\]
\[D = 2^{2} + 4 \bullet 3 \bullet 8 =\]
\[= 4 + 96 = 100\]
\[x_{1} = \frac{2 - 10}{2 \bullet 3} = - \frac{8}{6} =\]
\[= - \frac{4}{3} = - 1\frac{1}{3};\]
\[x_{2} = \frac{2 + 10}{2 \bullet 3} = \frac{12}{6} = 2;\]
\[\left( x + 1\frac{1}{3} \right)(x - 2) < 0;\]
\[- 1\frac{1}{3} < x < 2.\]
\[Ответ:\ \ - 1\frac{1}{3} < x < 2.\]