\[\boxed{\mathbf{713}.}\]
\[1)\ 11^{\sqrt{x + 6}} > 11^{x};\]
\[\sqrt{x + 6} > x;\]
\[x + 6 > x^{2};\]
\[x^{2} - x - 6 < 0;\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2\ \ и\ \]
\[\ x_{2} = \frac{1 + 5}{2} = 3;\]
\[(x + 2)(x - 3) < 0;\]
\[- 1 < x < 3;\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 6 \geq 0;\]
\[x \geq - 6;\]
\[Неравенство\ всегда\ верно\ при:\]
\[x < 0;\]
\[Ответ:\ \ - 6 \leq x < 3.\]
\[2)\ {0,3}^{\sqrt{30 - x}} > {0,3}^{x};\]
\[\sqrt{30 - x} < x;\]
\[30 - x < x^{2};\]
\[x^{2} + x - 30 > 0;\]
\[D = 1^{2} + 4 \bullet 30 =\]
\[= 1 + 120 = 121\]
\[x_{1} = \frac{- 1 - 11}{2} = - 6\ \ и\ \]
\[\ x_{2} = \frac{- 1 + 11}{2} = 5;\]
\[(x + 6)(x - 5) > 0;\]
\[x < - 6\ \ и\ \ x > 5;\]
\[Выражение\ имеет\ смысл\ при:\]
\[30 - x \geq 0;\]
\[x \leq 30;\]
\[Неравенство\ имеет\ решения\]
\[\ при:\]
\[x \geq 0;\]
\[Ответ:\ \ 5 < x \leq 30.\]