\[\boxed{\mathbf{715}.}\]
\[(2,5)^{(x + 1)^{2}} \cdot (0,4)^{4(x - 1)} \geq \left( \frac{25}{4} \right)^{6,5}\]
\[\left( \frac{5}{2} \right)^{(x + 1)^{2}} \cdot \left( \frac{2}{5} \right)^{4 \cdot (x - 1)} \geq \left( \frac{5}{2} \right)^{13}\]
\[\left( \frac{5}{2} \right)^{(x + 1)^{2}} \cdot \left( \frac{5}{2} \right)^{- 4 \cdot (x - 1)} \geq \left( \frac{5}{2} \right)^{13}\]
\[\left( \frac{5}{2} \right)^{(x + 1)^{2} - 4 \cdot (x - 1)} \geq \left( \frac{5}{2} \right)^{13}\]
\[Так\ как\ функция\ \]
\[возрастающая:\]
\[(x + 1)^{2} - 4 \cdot (x - 1) \geq 13\]
\[при\ x = 1 - решений\ нет.\]
\[1)\ при\ x > 1:\]
\[(x + 1)^{2} - 4 \cdot (x - 1) \geq 13\]
\[x^{2} + 2x + 1 - 4x + 4 - 13 \geq 0\]
\[x^{2} - 2x - 8 \geq 0\]
\[D_{1} = 1 + 8 = 9\]
\[x_{1} = 1 + 3 = 4;\ \ \]
\[x_{2} = 1 - 3 = - 2.\]
\[(x + 2)(x - 4) \geq 0\]
\[x \geq 4.\]
\[2)\ при\ x < 1:\]
\[(x + 1)^{2} + 4 \cdot (x - 1) \geq 13\]
\[x^{2} + 2x + 1 + 4x - 4 - 13 \geq 0\]
\[x^{2} + 6x - 16 \geq 0\]
\[D_{1} = 9 + 16 = 25\]
\[x_{1} = - 3 + 5 = 2;\ \]
\[\ x_{2} = - 3 - 5 = - 8.\]
\[(x + 8)(x - 2) \geq 0\]
\[x \leq - 8.\]
\[Ответ:x \leq - 8;\ \ x \geq 4.\]