\[\boxed{\mathbf{703}.}\]
\[1)\ 3^{x} > 9;\]
\[3^{x} > 3^{2};\ \]
\[x > 2;\]
\[Ответ:\ \ x > 2.\]
\[2)\ \left( \frac{1}{2} \right)^{x} > \frac{1}{4};\]
\[\left( \frac{1}{2} \right)^{x} > \left( \frac{1}{2} \right)^{2};\]
\[x < 2;\]
\[Ответ:\ \ x < 2.\]
\[3)\ \left( \frac{1}{4} \right)^{x} < 2;\]
\[4^{- x} < 2;\]
\[2^{- 2x} < 2^{1};\]
\[- 2x < 1;\]
\[x > - 0,5;\]
\[Ответ:\ \ x > - 0,5.\]
\[4)\ 4^{x} < \frac{1}{2};\]
\[4^{x} < 2^{- 1};\]
\[2^{2x} < 2^{- 1};\]
\[2x < - 1;\]
\[x < - 0,5;\]
\[Ответ:\ \ x < - 0,5.\]
\[5)\ 2^{3x} \geq \frac{1}{2};\]
\[2^{3x} \geq 2^{- 1};\]
\[3x \geq - 1;\]
\[x \geq - \frac{1}{3};\]
\[Ответ:\ \ x \geq - \frac{1}{3}.\]
\[6)\ \left( \frac{1}{3} \right)^{x - 1} \leq \frac{1}{9};\]
\[\left( \frac{1}{3} \right)^{x - 1} \leq \left( \frac{1}{3} \right)^{2};\]
\[x - 1 \geq 2;\]
\[x \geq 3;\]
\[Ответ:\ \ x \geq 3.\]