\[\boxed{\mathbf{688}.}\]
\[1)\ 10^{x} = \sqrt[3]{100};\]
\[10^{x} = \sqrt[3]{10^{2}};\]
\[10^{x} = 10^{\frac{2}{3}};\]
\[Ответ:\ \ x = \frac{2}{3}.\]
\[2)\ 10^{x} = \sqrt[5]{10\ 000};\]
\[10^{x} = \sqrt[5]{10^{4}};\]
\[10^{x} = 10^{\frac{4}{5}};\]
\[x = \frac{4}{5} = 0,8;\]
\[Ответ:\ \ x = 0,8.\]
\[3)\ 225^{2x^{2} - 24} = 15;\]
\[15^{2\left( 2x^{2} - 24 \right)} = 15^{1};\]
\[2\left( 2x^{2} - 24 \right) = 1;\]
\[4x^{2} - 48 = 1;\]
\[4x^{2} = 49;\]
\[x^{2} = \frac{49}{4};\]
\[x = \pm \sqrt{\frac{49}{4}} = \pm \frac{7}{2} = \pm 3,5;\]
\[Ответ:\ \ x = \pm 3,5.\]
\[4)\ 10^{x} = \frac{1}{\sqrt[4]{10\ 000}};\]
\[10^{x} = \frac{1}{\sqrt[4]{10^{4}}};\]
\[10^{x} = \frac{1}{10};\]
\[10^{x} = 10^{- 1};\]
\[Ответ:\ \ x = - 1.\]
\[5)\ \left( \sqrt{10} \right)^{x} = 10^{x^{2} - x};\]
\[\left( 10^{\frac{1}{2}} \right)^{x} = 10^{x^{2} - x};\]
\[10^{\frac{x}{2}} = 10^{x^{2} - x};\]
\[\frac{x}{2} = x^{2} - x;\]
\[x = 2x^{2} - 2x;\]
\[2x^{2} - 3x = 0;\]
\[x(2x - 3) = 0;\]
\[x_{1} = 0\ \ и\ \ x_{2} = \frac{3}{2} = 1,5;\]
\[Ответ:\ \ x_{1} = 0;\ \ x_{2} = 1,5.\]
\[6)\ 100^{x^{2} - 1} = 10^{1 - 5x};\]
\[10^{2\left( x^{2} - 1 \right)} = 10^{1 - 5x};\]
\[2\left( x^{2} - 1 \right) = 1 - 5x;\]
\[2x^{2} - 2 = 1 - 5x;\]
\[2x^{2} + 5x - 3 = 0;\]
\[D = 5^{2} + 4 \bullet 2 \bullet 3 =\]
\[= 25 + 24 = 49\]
\[x_{1} = \frac{- 5 - 7}{2 \bullet 2} = - \frac{12}{4} = - 3;\]
\[x_{2} = \frac{- 5 + 7}{2 \bullet 2} = \frac{2}{4} = 0,5;\]
\[Ответ:\ \ x_{1} = - 3;\ \ x_{2} = 0,5.\]