\[\boxed{\mathbf{687}.}\]
\[1)\ {0,3}^{x^{3} - x^{2} + x - 1} = 1;\]
\[{0,3}^{x^{3} - x^{2} + x - 1} = {0,3}^{0};\]
\[x^{3} - x^{2} + x - 1 = 0;\]
\[x^{2}(x - 1) + (x - 1) = 0;\]
\[\left( x^{2} + 1 \right)(x - 1) = 0;\]
\[x - 1 = 0;\]
\[x = 1;\]
\[Ответ:\ \ x = 1.\]
\[2)\ \left( 2\frac{1}{3} \right)^{- x^{2} - 2x + 3} = 1;\]
\[\left( 2\frac{1}{3} \right)^{- x^{2} - 2x + 3} = \left( 2\frac{1}{3} \right)^{0};\]
\[- x^{2} - 2x + 3 = 0;\]
\[x^{2} + 2x - 3 = 0;\]
\[D = 2^{2} + 4 \bullet 3 = 4 + 12 = 16\]
\[x_{1} = \frac{- 2 - 4}{2} = - 3\ \ и\ \]
\[\ x_{2} = \frac{- 2 + 4}{2} = 1;\]
\[Ответ:\ \ x_{1} = - 3;\ \ x_{2} = 1.\]
\[3)\ {5,1}^{\frac{1}{2}(x - 3)} = 5,1\sqrt{5,1};\]
\[{5,1}^{\frac{x - 3}{2}} = {5,1}^{1} \bullet {5,1}^{\frac{1}{2}};\]
\[{5,1}^{\frac{x - 3}{2}} = {5,1}^{1 + \frac{1}{2}};\]
\[\frac{x - 3}{2} = 1 + \frac{1}{2};\]
\[x - 3 = 2 + 1;\]
\[x - 3 = 3;\]
\[x = 6;\]
\[Ответ:\ \ x = 6.\]
\[4)\ 100^{x^{2} - 1} = 10^{1 - 5x};\]
\[10^{2\left( x^{2} - 1 \right)} = 10^{1 - 5x};\]
\[2\left( x^{2} - 1 \right) = 1 - 5x;\]
\[2x^{2} - 2 = 1 - 5x;\]
\[2x^{2} + 5x - 3 = 0;\]
\[D = 5^{2} + 4 \bullet 2 \bullet 3 =\]
\[= 25 + 24 = 49\]
\[x_{1} = \frac{- 5 - 7}{2 \bullet 2} = - \frac{12}{4} = - 3;\]
\[x_{2} = \frac{- 5 + 7}{2 \bullet 2} = \frac{2}{4} = 0,5;\]
\[Ответ:\ \ x_{1} = - 3;\ \ x_{2} = 0,5.\]