\[\boxed{\mathbf{689}.}\]
\[1)\ 2^{x^{2}} \bullet \left( \frac{1}{2} \right)^{\frac{1}{4}x} = \sqrt[4]{8};\]
\[2^{x^{2}} \bullet 2^{- \frac{1}{4}x} = \sqrt[4]{2^{3}};\]
\[2^{x^{2} - \frac{1}{4}x} = 2^{\frac{3}{4}};\]
\[x^{2} - \frac{1}{4}x = \frac{3}{4};\]
\[4x^{2} - x = 3;\]
\[4x^{2} - x - 3 = 0;\]
\[D = 1^{2} + 4 \bullet 4 \bullet 3 = 1 + 48 = 49\]
\[x_{1} = \frac{1 - 7}{2 \bullet 4} = - \frac{6}{8} = - 0,75;\]
\[x_{2} = \frac{1 + 7}{2 \bullet 4} = \frac{8}{8} = 1;\]
\[Ответ:\ \ x_{1} = - 0,75;\ \ x_{2} = 1.\]
\[2)\ 5^{0,1x} \bullet \left( \frac{1}{5} \right)^{- 0,06} = 5^{x^{2}};\]
\[5^{0,1x} \bullet 5^{0,06} = 5^{x^{2}};\]
\[5^{0,1x + 0,06} = 5^{x^{2}};\]
\[0,1x + 0,06 = x^{2};\]
\[10x + 6 = 100x^{2};\]
\[100x^{2} - 10x - 6 = 0;\]
\[D = 10^{2} + 4 \bullet 100 \bullet 6 =\]
\[= 100 + 2400 = 2500\]
\[x_{1} = \frac{10 - 50}{2 \bullet 100} = - \frac{40}{200} = - 0,2;\]
\[x_{2} = \frac{10 + 50}{2 \bullet 100} = \frac{60}{200} = 0,3;\]
\[Ответ:\ \ x_{1} = - 0,2;\ \ x_{2} = 0,3.\]
\[3)\ \left( \frac{1}{2} \right)^{\sqrt{1 - x}} \bullet \left( \frac{1}{2} \right)^{- 1} = \left( \frac{1}{2} \right)^{2x};\]
\[\left( \frac{1}{2} \right)^{\sqrt{1 - x} - 1} = \left( \frac{1}{2} \right)^{2x};\]
\[\sqrt{1 - x} - 1 = 2x;\]
\[\sqrt{1 - x} = 2x + 1;\]
\[1 - x = 4x^{2} + 4x + 1;\]
\[4x^{2} + 5x = 0;\]
\[x(4x + 5) = 0;\]
\[x_{1} = 0\ \ и\ \ x_{2} = - \frac{5}{4} = - 1,25;\]
\[Выражение\ имеет\ смысл\ при:\]
\[1 - x \geq 0 \Longrightarrow \ x \leq 1;\]
\[Уравнение\ имеет\]
\[\ решения\ при:\]
\[2x + 1 \geq 0;\]
\[2x \geq - 1;\]
\[x \geq - \frac{1}{2};\]
\[Ответ:\ \ x = 0.\]
\[4)\ {0,7}^{\sqrt{x + 12}} \bullet {0,7}^{- 2} = {0,7}^{\sqrt{x}};\]
\[{0,7}^{\sqrt{x + 12} - 2} = {0,7}^{\sqrt{x}};\]
\[\sqrt{x + 12} - 2 = \sqrt{x};\]
\[\sqrt{x + 12} = \sqrt{x} + 2;\]
\[x + 12 = x + 4\sqrt{x} + 4;\]
\[8 = 4\sqrt{x};\]
\[2 = \sqrt{x};\]
\[x = 4;\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 12 \geq 0;\]
\[x \geq - 12;\]
\[Ответ:\ \ x = 4.\]