\[\boxed{\mathbf{594}.}\]
\[1)\ |3x - 1| = 5\ \ и\ \ 3x - 1 = 5;\]
\[Решим\ первое\ уравнение:\]
\[|3x - 1| = 5\]
\[\left\{ \begin{matrix} 3x - 1 = 5\ \ \ \\ 3x - 1 = - 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} 3x = 6\ \ \ \\ 3x = - 4 \\ \end{matrix} \right.\ \ \]
\[\text{\ \ }\left\{ \begin{matrix} x = 2\ \ \ \ \\ x = - \frac{4}{3} \\ \end{matrix} \right.\ \]
\[Решим\ второе\ уравнение:\]
\[3x - 1 = 5\]
\[3x = 6\]
\[x = 2.\]
\[Ответ:\ \ не\ равносильны.\]
\[2)\ \frac{3x - 2}{3} - \frac{4 - x}{2} - \frac{3x - 5}{6} =\]
\[= 2x - 2\ \ и\ \ 2x + 3 = \frac{10}{3};\]
\[Решим\ первое\ уравнение:\]
\[\frac{3x - 2}{3} - \frac{4 - x}{2} - \frac{3x - 5}{6} =\]
\[= 2x - 2\ \ \ \ \ | \bullet 6;\]
\[2(3x - 2) - 3(4 - x) -\]
\[- (3x - 5) = 6(2x - 2);\]
\[6x - 4 - 12 + 3x - 3x + 5 =\]
\[= 12x - 12;\]
\[6x - 11 = 12x - 12;\]
\[6x = 1:\]
\[x = \frac{1}{6}.\]
\[Решим\ второе\ уравнение:\]
\[2x + 3 = \frac{10}{3}\ \ \ \ \ | \bullet 3;\]
\[3(2x + 3) = 10;\]
\[6x + 9 = 10;\]
\[6x = 1;\]
\[x = \frac{1}{6}.\]
\[Ответ:\ \ равносильны.\]