\[\boxed{\mathbf{543}.}\]
\[\frac{\left( x^{2} + 9 \right)^{- 0,5} + \left( x^{2} - 9 \right)^{- 0,5}}{\left( x^{2} + 9 \right)^{- 0,5} - \left( x^{2} - 9 \right)^{- 0,5}} =\]
\[= \left( \frac{1}{\sqrt{x^{2} + 9}} + \frac{1}{\sqrt{x^{2} - 9}} \right)\ :\]
\[:\left( \frac{1}{\sqrt{x^{2} + 9}} - \frac{1}{\sqrt{x^{2} - 9}} \right) =\]
\[= \frac{\sqrt{x^{2} - 9} + \sqrt{x^{2} + 9}}{\sqrt{\left( x^{2} + 9 \right)\left( x^{2} - 9 \right)}}\ :\]
\[:\frac{\sqrt{x^{2} - 9} - \sqrt{x^{2} + 9}}{\sqrt{\left( x^{2} + 9 \right)\left( x^{2} - 9 \right)}} =\]
\[= \frac{\sqrt{x^{2} - 9} + \sqrt{x^{2} + 9}}{\sqrt{\left( x^{2} + 9 \right)\left( x^{2} - 9 \right)}} \cdot\]
\[\cdot \frac{\sqrt{\left( x^{2} + 9 \right)\left( x^{2} - 9 \right)}}{\sqrt{x^{2} - 9} - \sqrt{x^{2} + 9}} =\]
\[= \frac{\sqrt{x^{2} - 9} + \sqrt{x^{2} + 9}}{\sqrt{x^{2} - 9} - \sqrt{x^{2} + 9}}\]
\[x = 3 \cdot \left( \frac{a^{2} + b^{2}}{2ab} \right)^{\frac{1}{2}}:\]
\[1)\ a > 0;\ \ b > 0;\ \ a > b:\]
\[\frac{a - b + a + b}{a - b - a - b} = \frac{2a}{- 2b} = - \frac{a}{b}.\]
\[2)\ a > 0;\ \ b > 0;\ \ b > a:\]
\[\frac{- a + b + a + b}{- a + b - a - b} = \frac{2b}{- 2a} = - \frac{b}{a}.\]
\[3)\ a < 0;\ \ b < 0;b > a:\]
\[\frac{a - b + a + b}{a - b - a - b} = \frac{2a}{- 2b} = - \frac{a}{b}.\]
\[4)\ a < 0;b < 0;a > b:\]
\[\frac{- a + b + a + b}{- a + b - a - b} = \frac{2b}{- 2a} = - \frac{b}{a}.\]