\[\boxed{\mathbf{542}.}\]
\[1)\ \sqrt{10 + \sqrt{7} - \sqrt{8 + 2\sqrt{7}\ }} =\]
\[= 1 + \sqrt{3 - \sqrt{6} + \sqrt{7 + 2\sqrt{6}}}\ \]
\[\sqrt{10 + \sqrt{7} - \sqrt{\left( \sqrt{7} + 1 \right)^{2}}} =\]
\[= 1 + \sqrt{3 - \sqrt{6} + \sqrt{\left( \sqrt{6} + 1 \right)^{2}}}\]
\[\sqrt{10 + \sqrt{7} - \sqrt{7} - 1} =\]
\[= 1 + \sqrt{3 - \sqrt{6} + \sqrt{6} + 1}\]
\[\sqrt{9} = 1 + \sqrt{4}\]
\[3 = 3.\]
\[Тождество\ доказано.\]
\[\sqrt{2 - \sqrt{1}} = 1\]
\[\sqrt{2 - 1} = 1\]
\[1 = 1.\]
\[Тождество\ доказано.\]