\[\boxed{\mathbf{541}.}\]
\[1)\ a > 0;\ \ a^{2} \geq b > 0:\]
\[\left( \sqrt{a + \sqrt{b}} \right)^{2} =\]
\[= \left( \sqrt{\frac{a + \sqrt{a^{2} - b}}{2}} + \sqrt{\frac{a - \sqrt{a^{2} - b}}{2}} \right)^{2}\]
\[a + \sqrt{b} = \frac{a + \sqrt{a^{2} - b}}{2} +\]
\[+ 2\sqrt{\left( \frac{a + \sqrt{a^{2} - b}}{2} \right)\left( \frac{a - \sqrt{a^{2} - b}}{2} \right)} -\]
\[- \frac{a - \sqrt{a^{2} - b}}{2} =\]
\[= \frac{a + \sqrt{a^{2} - b} + a - \sqrt{a^{2} - b}}{2} +\]
\[+ 2\sqrt{\frac{\left( a^{2} - a^{2} + b \right)}{4}} = \frac{2a}{2} +\]
\[+ \frac{2}{2}\sqrt{b} = \sqrt{a} + \sqrt{b}.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ a > 0;\ \ a^{2} \geq b > 0:\]
\[\left( \sqrt{a - \sqrt{b}} \right)^{2} =\]
\[= \left( \sqrt{\frac{a + \sqrt{a^{2} - b}}{2}} - \sqrt{\frac{a - \sqrt{a^{2} - b}}{2}} \right)^{2}\ \]
\[a - \sqrt{b} = \frac{a + \sqrt{a^{2} - b}}{2} -\]
\[- 2\sqrt{\left( \frac{a + \sqrt{a^{2} - b}}{2} \right)\left( \frac{a - \sqrt{a^{2} - b}}{2} \right)} -\]
\[- \frac{a - \sqrt{a^{2} - b}}{2} =\]
\[= \frac{a + \sqrt{a^{2} - b} + a - \sqrt{a^{2} - b}}{2} -\]
\[- 2\sqrt{\frac{\left( a^{2} - a^{2} + b \right)}{4}} =\]
\[= \frac{2a}{2} - \frac{2}{2}\sqrt{b} = \sqrt{a} - \sqrt{b}.\]
\[Что\ и\ требовалось\ доказать.\]