\[\boxed{\mathbf{482}.}\]
\[1)\ 2^{2 - 3\sqrt{3}} \cdot 8^{\sqrt{3}} = 2^{2 - 3\sqrt{3}} \cdot 2^{3\sqrt{3}} =\]
\[= 2^{2 - 3\sqrt{3} + 3\sqrt{3}} = 2^{2} = 4;\]
\[2)\ 9^{3 + \sqrt{2}} \cdot 3^{1 - \sqrt{2}} \cdot 3^{- 4 - \sqrt{2}} =\]
\[= 3^{6 + 2\sqrt{2}} \cdot 3^{1 - \sqrt{2}} \cdot 3^{- 4 - \sqrt{2}} =\]
\[= 3^{6 + 2\sqrt{2} + 1 - \sqrt{2} - 4 - \sqrt{2}} = 3^{3} = 27.\]