\[\boxed{\mathbf{483}.}\]
\[1)\ \frac{8^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}} \cdot 4^{1 + \sqrt{5}}} =\]
\[= \frac{2^{9 + 3\sqrt{5}}}{2^{2 + \sqrt{5}} \cdot 2^{2 + 2\sqrt{5}}} =\]
\[= 2^{9 + 3\sqrt{5} - 2 - \sqrt{5} - 2 - 2\sqrt{5}} = 2^{5} = 32;\]
\[2)\ \left( 2^{2\sqrt{3}} - 4^{\sqrt{3} - 1} \right) \cdot 2^{- 2\sqrt{3}} =\]
\[= 2^{2\sqrt{3}} \cdot 2^{- 2\sqrt{3}} -\]
\[- 2^{2\sqrt{3} - 2} \cdot 2^{- 2\sqrt{3}} =\]
\[= 2^{2\sqrt{3} - 2\sqrt{3}} - 2^{2\sqrt{3} - 2 - 2\sqrt{3}} =\]
\[= 2^{0} - 2^{- 2} = 1 - \frac{1}{4} = \frac{3}{4}.\]