\[\boxed{\mathbf{464}.}\]
\[1)\ \sqrt{43 + 30\sqrt{2}} +\]
\[+ \sqrt{43 - 30\sqrt{2}} = A\]
\[A^{2} =\]
\[= \left( \sqrt{43 + 30\sqrt{2}} + \sqrt{43 - 30\sqrt{2}} \right)^{2} =\]
\[= \left( \sqrt{43 + 30\sqrt{2}} \right)^{2} + 2 \cdot\]
\[\bullet \sqrt{\left( 43 + 30\sqrt{2} \right)\left( 43 - 30\sqrt{2} \right)} +\]
\[+ \left( \sqrt{43 - 30\sqrt{2}} \right)^{2} =\]
\[= 43 + 30\sqrt{2} +\]
\[+ 2\sqrt{1849 - 1800} + 43 -\]
\[- 30\sqrt{2} = 86 + 2\sqrt{49} =\]
\[\text{=}86 + 14 = 100\]
\[A^{2} = 100 \Longrightarrow A = 10 \Longrightarrow так\ как\]
\[\ сумма\ неотрицательных\]
\[\ чисел -\]
\[число\ неотрицательное.\]
\[Ответ:10.\]
\[2)\ \ \sqrt{109 + 12\sqrt{3}} -\]
\[- \sqrt{109 - 12\sqrt{3}} = \text{A\ }\]
\[A^{2} = \left( \sqrt{109 + 12\sqrt{3}} - \sqrt{109 - 12\sqrt{3}} \right)^{2} =\]
\[= \left( \sqrt{109 + 12\sqrt{3}} \right)^{2} - 2 \cdot\]
\[\bullet \sqrt{\left( 109 + 12\sqrt{3} \right)\left( 109 - 12\sqrt{3} \right)} +\]
\[+ \left( \sqrt{109 - 12\sqrt{3}} \right)^{2} =\]
\[= 109 + 12\sqrt{3} -\]
\[- 2\sqrt{11\ 881 - 432} + 109 -\]
\[- 12\sqrt{3} = 218 - 2\sqrt{11449} =\]
\[= 218 - 2 \cdot 107 =\]
\[= 218 - 214 = 4\]
\[A^{2} = 4 \Longrightarrow A = 2 \Longrightarrow так\ как\ \]
\[сумма\ неотрицательных\]
\[\ чисел -\]
\[число\ неотрицательное.\]
\[Ответ:2.\]