\[\boxed{\mathbf{463}.}\]
\[1)\ \sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}} = 2\]
\[Возведем\ обе\ части\ равенства\]
\[\ во\ вторую\ степень:\]
\[\left( 4 + 2\sqrt{3} \right) - 2\sqrt{4 + 2\sqrt{3}} \bullet\]
\[\bullet \sqrt{4 - 2\sqrt{3}} + \left( 4 - 2\sqrt{3} \right) = 4\]
\[4 + 2\sqrt{3} + 4 - 2\sqrt{3} -\]
\[- 2\sqrt{\left( 4 + 2\sqrt{3} \right)\left( 4 - 2\sqrt{3} \right)} = 4\]
\[8 - 2\sqrt{16 - 4 \bullet 3} = 4\]
\[8 - 2\sqrt{16 - 12} = 4\]
\[8 - 2\sqrt{4} = 4\]
\[8 - 2 \bullet 2 = 4\]
\[8 - 4 = 4\]
\[Тождество\ доказано.\]
\[2)\ \sqrt[3]{9 + \sqrt{80}} + \sqrt[3]{9 - \sqrt{80}} = 3\]
\[Пусть\ x = \sqrt[3]{9 + \sqrt{80}} +\]
\[+ \sqrt[3]{9 - \sqrt{80}}:\]
\[x^{3} = \left( 9 + \sqrt{80} \right) +\]
\[+ 3\sqrt[3]{\left( 9 + \sqrt{80} \right)^{2}\left( 9 - \sqrt{80} \right)} +\]
\[+ 3\sqrt[3]{\left( 9 + \sqrt{80} \right)\left( 9 - \sqrt{80} \right)^{2}} +\]
\[+ \left( 9 - \sqrt{80} \right)\]
\[x^{3} = 18 + 3\sqrt[3]{81 - 80} \bullet\]
\[\bullet \left( \sqrt[3]{9 + \sqrt{80}} + \sqrt[3]{9 - \sqrt{80}} \right)\]
\[x^{3} = 18 + 3 \bullet 1 \bullet x\]
\[x^{3} - 3x - 18 = 0\]
\[\left( x^{3} + 3x^{2} + 6x \right) -\]
\[- \left( 3x^{2} + 9x + 18 \right) = 0\]
\[x\left( x^{2} + 3x + 6 \right) -\]
\[- 3\left( x^{2} + 3x + 6 \right) = 0\]
\[(x - 3)\left( x^{2} + 3x + 6 \right) = 0\]
\[x - 3 = 0\]
\[\ x = 3.\]
\[Тождество\ доказано.\]