\[\boxed{\mathbf{465}.}\]
\[1)\ \frac{1}{1 + \sqrt[3]{3} - \sqrt[3]{9}}\]
\[Заменим:\ \ \sqrt[3]{3} = x.\]
\[\frac{1}{1 + x - x^{2}} = \frac{1}{1 + x + x^{2} - 2x^{2}} =\]
\[= \frac{(x - 1)}{\left( x^{3} - 1 \right) - 2x^{2}(x - 1)} =\]
\[= \frac{x - 1}{3 - 1 - 2x^{3} + 2x^{2}} =\]
\[= \frac{x - 1}{2x^{2} + 2 - 2 \cdot 3} = \frac{x - 1}{2x^{2} - 4} =\]
\[= \frac{x - 1}{2 \cdot \left( x^{2} - 2 \right)} \cdot \frac{\left( 4 + 2x^{2} + x^{4} \right)}{\left( 4 + 2x^{2} + x^{4} \right)} =\]
\[= \frac{(x - 1)\left( 4 + 2x^{2} + x^{4} \right)}{2 \cdot \left( x^{6} - 8 \right)} =\]
\[= \frac{\left( \sqrt[3]{3} - 1 \right)\left( 4 + 2\sqrt[3]{9} + \sqrt[3]{81} \right)}{2 \cdot \left( 3^{2} - 8 \right)} =\]
\[= \frac{\left( \sqrt[3]{3} - 1 \right)\left( \sqrt[3]{81} + 2\sqrt[3]{9} + 4 \right)}{2};\]
\[2)\ \frac{1}{\sqrt[3]{2} + \sqrt[3]{3} - \sqrt[3]{5}} =\]