\[\boxed{\mathbf{416}.}\]
\[\lim_{n \rightarrow \infty}x_{n} = 0\]
\[1)\ x_{n} = \frac{1}{n + 1}\]
\[|x_{n}| = \left| \frac{1}{n + 1} \right| < E\]
\[n + 1 > \frac{1}{E}\]
\[n > \left\lbrack \frac{1}{E} \right\rbrack\]
\[N_{E} = \left\lbrack \frac{1}{E} \right\rbrack.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ x_{n} = \frac{1}{\sqrt{n}}\]
\[|x_{n}| = \left| \frac{1}{\sqrt{n}} \right| < E\]
\[\sqrt{n} > \frac{1}{E}\]
\[n > \frac{1}{E^{2}}\]
\[n > \left\lbrack \frac{1}{E²} \right\rbrack + 1\]
\[N_{E} = \left\lbrack \frac{1}{E²} \right\rbrack + 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\ x_{n} = \frac{1}{n^{3}}\]
\[|x_{n}| = \left| \frac{1}{n^{3}} \right| < E\]
\[n^{3} > \frac{1}{E}\]
\[n > \sqrt[3]{\frac{1}{E}\ }\]
\[n > \left\lbrack \sqrt[3]{\frac{1}{E}\ } \right\rbrack + 1\]
\[N_{E} = \left\lbrack \sqrt[3]{\frac{1}{E}\ } \right\rbrack + 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[4)\ x_{n} = \frac{n}{n² + 4}\]
\[\lim_{n \rightarrow \infty}x_{n} = \lim_{n \rightarrow \infty}\frac{n}{n^{2} + 4} =\]
\[= \lim_{n \rightarrow \infty}x_{n} = \frac{\frac{1}{n}}{1 + \frac{4}{n^{2}}} = \frac{0}{1} = 0.\]
\[Что\ и\ требовалось\ доказать.\]