\[\boxed{\mathbf{383}.}\]
\[x^{3} - \left( 1 - \sqrt{5} \right)x^{2} - \left( 1 - \sqrt{5} \right)x +\]
\[+ 1 = 0;\ \ x_{1} = 1\]
\[P(1) = 1 - 1 + \sqrt{5} - 1 -\]
\[- \sqrt{5} + 1 = 0.\]
\[1\] | \[\left( - 1 + \sqrt{5} \right)\] | \[\left( - 1 - \sqrt{5} \right)\] | \[1\] | |
---|---|---|---|---|
\[1\] | \[1\] | \[\sqrt{5}\] | \[- 1\] | \[0\] |
\[P(x) =\]
\[= (x - 1)\left( x^{2} + \sqrt{5x} - 1 \right) = 0\]
\[x^{2} + \sqrt{5}x - 1 = 0\]
\[D = 5 + 4 = 9\]
\[x = \frac{- \sqrt{5} \pm 3}{2}.\]
\[Ответ:x = 1;\ \ \frac{- \sqrt{5} \pm 3}{2}.\]