\[\boxed{\mathbf{382}.}\]
\[6x^{4} - 11x^{3} - 13x^{2} + 10x +\]
\[+ 8 = 0;\ \ \ x_{1} = 1;\ \ x_{2} = - \frac{2}{3}.\]
\[P(1) = 6 - 11 - 13 + 10 +\]
\[+ 8 = 0;\]
\[P\left( - \frac{2}{3} \right) = 6 \cdot \frac{16}{81} + 11 \cdot \frac{8}{27} -\]
\[- 13 \cdot \frac{4}{9} - 10 \cdot \frac{2}{3} + 8 =\]
\[= \frac{96}{81} + \frac{264}{81} - \frac{468}{81} - \frac{540}{81} + 8 =\]
\[= - 8 + 8 = 0.\]
\[6\] | \[- 11\] | \[- 13\] | \[10\] | \[8\] | |
---|---|---|---|---|---|
\[1\] | \[6\] | \[- 5\] | \[- 18\] | \[- 8\] | \[0\] |
\[- \frac{2}{3}\] | \[6\] | \[- 9\] | \[- 12\] | \[0\] |
\[P(x) = (x - 1)\left( x + \frac{2}{3} \right)\]
\[\left( 6x^{2} - 9x - 12 \right)\]
\[6x^{2} - 9x - 12 = 0\ \ \ \ \ |\ :3\]
\[2x^{2} - 3x - 4 = 0\]
\[D = 9 + 32 = 41\]
\[x = \frac{3 \pm \sqrt{41}}{4}.\]
\[Ответ:\ \ x = - \frac{2}{3};\ \ 1;\ \ \frac{3 \pm \sqrt{41}}{4}.\]