\[\boxed{\mathbf{356}.}\]
\[\left( \frac{a}{\sqrt{x}} + \frac{\sqrt{x}}{a} \right)^{m}\]
\[C_{m}^{2} = \frac{m!}{2!(m - 2)!} =\]
\[= \frac{1}{2}(m - 1) \cdot m = 66\ \ | \cdot 2\]
\[m^{2} - m = 132\]
\[m^{2} - m - 132 = 0\]
\[D = 1 + 528 = 529 = 23^{2}\]
\[m_{1} = \frac{1 + 23}{2} = 12;\ \ \ \]
\[m_{2} = \frac{1 - 23}{2} = - 11.\]
\[m = 12;\ \ пятый\ член:\]
\[C_{12}^{4} \cdot \left( \frac{a}{\sqrt{x}} \right)^{8} \cdot \left( \frac{\sqrt{x}}{a} \right)^{4} = \frac{12!}{4!8!} \cdot \frac{a^{4}}{x^{2}} =\]
\[= \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8!}{4 \cdot 3 \cdot 2 \cdot 8!} \cdot \frac{a^{4}}{x^{2}} =\]
\[= 495 \cdot \frac{a^{4}}{x^{2}}.\]
\[Ответ:495 \cdot \frac{a^{4}}{x^{2}}.\]