Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 357

Авторы:
Тип:учебник

Задание 357

\[\boxed{\mathbf{357}.}\]

\[1)\ \left\{ \begin{matrix} x^{2} + y^{2} = 74 \\ x + y = 12\ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = 12 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (12 - y)^{2} + y^{2} = 74 \\ \end{matrix} \right.\ \]

\[144 - 24y + y^{2} + y^{2} - 74 = 0\]

\[2y^{2} - 24y + 70 = 0\ \ \ \ |\ :2\]

\[y^{2} - 12y + 35 = 0\]

\[D_{1} = 36 - 35 = 1\]

\[y_{1} = 6 + 1 = 7;\ \ \ \ \ \]

\[\ y_{2} = 6 - 1 = 5;\]

\[x_{1} = 12 - 7 = 5;\ \ \]

\[\text{\ \ }x_{2} = 12 - 5 = 7.\]

\[Ответ:(5;7);(7;5).\]

\[2)\ \left\{ \begin{matrix} x^{2} - y^{2} = 32 \\ x - y = 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\text{\ \ }\left\{ \begin{matrix} (x - y)(x + y) = 32 \\ x - y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\ \left\{ \begin{matrix} 4 \cdot (x + y) = 32\ \ |\ :4 \\ x - y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x + y = 8 \\ x - y = 4 \\ \end{matrix} \right.\ ( + )\]

\[2x = 12\]

\[x = 6.\]

\[y = x - 4 = 6 - 4 = 2.\]

\[Ответ:(6;2).\]

\[3)\ \left\{ \begin{matrix} x^{2} + y^{2} = 10 \\ x + y = 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} x = 4 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (4 - y)^{2} + y^{2} = 10 \\ \end{matrix} \right.\ \]

\[16 - 8y + y^{2} + y^{2} - 10 = 0\]

\[2y^{2} - 8y + 6 = 0\ \ \ |\ :2\]

\[y^{2} - 4y + 3 = 0\]

\[D_{1} = 4 - 3 = 1\]

\[y_{1} = 2 + 1 = 3;\ \ \ \ \ \]

\[y_{2} = 2 - 1 = 1;\]

\[x_{1} = 4 - 3 = 1;\ \ \ \ \ \]

\[x_{2} = 4 - 1 = 3.\]

\[Ответ:(1;3);(3;1).\]

\[4)\ \left\{ \begin{matrix} x^{2} - y^{2} = 16 \\ x - y = 1\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} (x - y)(x + y) = 16 \\ x - y = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x + y = 16 \\ x - y = 1\ \ \ \\ \end{matrix} \right.\ ( + )\]

\[2x = 17\]

\[x = 8,5.\]

\[y = x - 1 = 8,5 - 1 = 7,5.\]

\[Ответ:(8,5;7,5).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам