\[\boxed{\mathbf{350}.}\]
\[\left( x^{3} + \frac{1}{x^{3}} \right)^{18}\]
\[C_{18}^{k} \cdot \left( x^{3} \right)^{k} \cdot \left( \frac{1}{x^{3}} \right)^{18 - k} =\]
\[= C_{18}^{k} \cdot x^{3k} \cdot \left( x^{3} \right)^{k - 18} =\]
\[= C_{18}^{k} \cdot x^{3k} \cdot x^{3k - 54} =\]
\[= C_{18}^{k} \cdot x^{6k - 54}\]
\[6k - 54 = 0\]
\[6k = 54\]
\[k = 9.\]
\[Ответ:\ \ T_{10} = C_{18}^{9}.\]