\[\boxed{\mathbf{349}.}\]
\[1)\ \left( \sqrt{x} + x \right)^{10} =\]
\[C_{10}^{4}\left( \sqrt{x} \right)^{4} \cdot x^{5} =\]
\[= C_{10}^{4} \cdot x^{2} \cdot x^{5} = C_{10}^{4}x^{7}.\]
\[2)\ \left( x - \frac{1}{x} \right)^{13}\]
\[C_{13}^{4} \cdot x^{9} \cdot \left( - \frac{1}{x} \right)^{4} =\]
\[= C_{13}^{4} \cdot x^{9} \cdot \frac{1}{x^{4}} = C_{13}^{4} \cdot x^{5}.\]
\[3)\ \left( 2 + \sqrt{x} \right)^{9}\]
\[C_{9}^{5} \cdot 2^{5} \cdot \left( \sqrt{x} \right)^{4} = \frac{9!}{5!4!} \cdot 32 \cdot x^{2} =\]
\[= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5! \cdot 4 \cdot 3 \cdot 2} \cdot 32x^{2} =\]
\[= 126 \cdot 32x^{2} =\]
\[= 4032x^{2}.\]