\[\boxed{\mathbf{338}.}\]
\[x + y = 1;\ \ xy = - 2:\]
\[(x + y)^{2} = x^{2} + 2xy + y^{2} =\]
\[= x^{2} + y^{2} + 2 \cdot ( - 2) = 1\]
\[x^{2} + y^{2} = 5;\ \ \left( \text{xy} \right)^{2} = 4.\]
\[x^{6} + y^{6} = \left( x^{2} \right)^{3} + \left( y^{2} \right)^{3} =\]
\[= \left( x^{2} + y^{2} \right)\left( \left( x^{2} \right)^{2} - \left( \text{xy} \right)^{2} + \left( y^{2} \right)^{2} \right) =\]
\[= 5 \cdot \left( \left( x^{2} \right)^{2} + 2\left( \text{xy} \right)^{2} + \left( y^{2} \right)^{2} - 2\left( \text{xy} \right)^{2} - \left( \text{xy} \right)^{2} \right) =\]
\[= 5 \cdot \left( \left( x^{2} + y^{2} \right)^{2} - 3\left( \text{xy} \right)^{2} \right) =\]
\[= 5 \cdot (25 - 3 \cdot 4) = 5 \cdot 13 = 65.\]
\[Ответ:65.\]